Senin, 07 Oktober 2013

Pemfaktoran Bentuk Kuadrat



Pemfaktoran Bentuk Kuadrat

a. Pemfaktoran bentuk ax2 + bx + c dengan a = 1
Perhatikan perkalian suku dua berikut.
(x + p)(x + q) = x2 + qx + px + pq
                       = x2 + (p + q)x + pq
Jadi, bentuk x2 + (p + q)x + pq dapat difaktorkan menjadi (x + p) (x + q). Misalkan, x2 + (p + q)x + pq = ax2 + bx + c sehingga a = 1, b = p + q, dan c = pq.

Dari pemisalan tersebut, dapat dilihat bahwa p dan q merupakan faktor dari c. Jika p dan q dijumlahkan, hasilnya adalah b. Dengan demikian untuk memfaktorkan bentuk ax2 + bx + c dengan a = 1, tentukan dua bilangan yang merupakan faktor dari c dan apabila kedua bilangan tersebut dijumlahkan, hasilnya sama dengan b.
Agar kamu lebih memahami materi ini, pelajarilah contoh soal berikut.
Contoh Soal :
Faktorkanlah bentuk-bentuk berikut.
   a. x2 + 5x + 6         b. x2 + 2x – 8
Jawab:
a. x2 + 5x + 6 = (x + …) (x + …)
    Misalkan, x2 + 5x + 6 = ax2 + bx + c, diperoleh a = 1, b = 5, dan c = 6.
    Untuk mengisi titik-titik, tentukan dua bilangan yang merupakan faktor dari 6
    dan apabila kedua bilangan tersebut dijumlahkan, hasilnya sama dengan 5.
    Faktor dari 6 adalah 6 dan 1 atau 2 dan 3, yang memenuhi syarat adalah 2 dan
    Jadi, x2 + 5x + 6 = (x + 2) (x + 3)
b. x2 + 2x – 8 = (x + …) (x + …)
    Dengan cara seperti pada (a), diperoleh a = 1, b = 2, dan c = –8.
    Faktor dari 8 adalah 1, 2, 4, dan 8. Oleh karena c = –8, salah satu dari
    dua bilangan yang dicari pastilah bernilai negatif. Dengan demikian, dua
    bilangan yang memenuhi syarat adalah –2 dan 4, karena –2 × 4 = –8 dan
    –2 + 4 = 2.
    Jadi, x2 + 2x – 8 = (x + (–2)) (x + 4) = (x – 2) (x + 4)

Tidak ada komentar:

Posting Komentar